你好,陕西在职考研网欢迎你!  腾飞在职考研辅导即将开班!
您现在的位置:网站首页 > 复习指导 > MPAcc

2014年会计硕士联考数学概率试题复习及答案

时间:2014年06月23日 来自:陕西在职考研网 资讯更全面,成考更专业 访问点击量:2028次

 1、有5名同学争夺3项比赛的冠军,若每项只设1名冠军,则获得冠军的可能情况的种数是()
  (A)种
  (B)种
  (C)124种
  (D)130种
  (E)以上结论均不正确
  【解题思路】这是一个允许有重复元素的排列问题,分三步完成:
  第一步,获得第1项冠军,有5种可能情况;
  第二步,获得第2项冠军,有5种可能情况;
  第三步,获得第3项冠军,有5种可能情况;
  由乘法原理,获得冠军的可能情况的种数是:
  【参考答案】(B)
  2、有6本不同的书,借给8名同学,每人至多1本,且无多余的书,则不同的供书法共有()
  (A)种
  (B)种
  (C)种
  (D)种
  (E)无法计算
  【解题思路】把8名同学看作8个不同元素,把6本不同的书看作6个位置,故所求方法为种。
  【参考答案】(B)
  3、从这20个自然数中任取3个不同的数,使它们成等差数列,这样的等差数列共有()
  (A)90个
  (B)120个
  (C)200个
  (D)180个
  (E)190个
  【解题思路】分类完成
  以1为公差的由小到大排列的等差数列有18个;以2为公差的由小到大的等差数列有16个;以3为公差的由小到大的等差数列有14个;…;以9为公差的由小到大的等差数列有2个。
  组成的等差数列总数为(个)
  【参考答案】(D)
  4、有4名候选人中,评选出1名三好学生,1名优秀干部,1名先进团员,若允许1人同时得几个称号,则不同的评选方案共有()
  (A)种
  (B)种
  (C)种
  (D)种
  (E)以上结论均不正确
  【解题思路】把1名三好生,1名优秀干部,1名先进团员看作3个位置,把4名候选人看作4个元素。因为每个位置上都有4种选择方法,所以符合题意的评选方案共有
  (种)
< style="font-size:14px;">  【参考答案】(B)
  5、有甲、乙、丙三项任务,甲需2人承担,乙和丙各需1人承担。现从10人中选派4人承担这3项任务,不同的选派方法共有()
  (A)1260种
  (B)2025种
  (C)2520种
  (D)5040种
  (E)6040种
  【解题思路】分步完成:
  第1步选派2人承担甲任务,有种方法;
  第2步选派2人分别承担乙,丙任务,有种方法;
  由乘法原理,不同的选派方法共有:(种)
  【参考答案】(C)

 1、从4台甲型和5台乙型电视机中任取3台,要求其中至少有甲型与乙型电视机各1台,则不同的取法共有()

  (A)140种

  (B)80种

  (C)70种

  (D)35种

  (E)以上结论均不正确

  【解题思路】分类完成:

  第1类取出1台甲型和2台乙型电视机,有种方法;

  第2类取出2台甲型和1台乙型电视机,有种方法,

  由加法原理,符合题意的取法共有种方法。

  【参考答案】(C)

  2、由0、1、2、3、4、5这6个数字组成的六位数中,个位数字小于十位数字的有()

  (A)210个

  (B)300个

  (C)464个

  (D)600个

  (E)610个

  【解题思路】由0、1、2、3、4、5这6个数字组成的六位数共有个,其中个位数字小于十位数字的占一半,所以符合题意的六位数有(个)。

  【参考答案】(B)

  3、设有编号为1、2、3、4、5的5个小球和编号为1、2、3、4、5的5个盒子,现将这5个小球放入这5个盒子内,要求每个盒子内放入一个球,且恰好有2个球的编号与盒子的编号相同,则这样的投放方法的总数为()

  (A)20种

  (B)30种

  (C)60种

  (D)120种

  (E)130种

  【解题思路】分两步完成:

  第1步选出两个小球放入与它们具有相同编号的盒子内,有种方法;

  第2步将其余小球放入与它们的编号都不相同的盒子内,有2种方法,

  由乘法原理,所求方法数为种。

  【参考答案】(A)

  4、有3名毕业生被分配到4个部门工作,若其中有一个部门分配到2名毕业生,则不同的分配方案共有()

  (A)40种

  (B)48种

  (C)36种

  (D)42种

  (E)50种

  【解题思路】分步完成:

  第1步选出分到一个部门的2名毕业生,有种选法;

  第2步分配到4个部门中的2个部门,有种分法,

  由乘法原理,所求不同的分配方案为(种)。

  【参考答案】(C)


 1、 设10件产品中有4件不合格品,从中任取两件,已知取出的两件中有一件不合格品,求另一件也是不合格品的概率。(0.2)

  【思路】在”已知取出的两件中有一件不合格品”的情况下,另一件有两种情况(1)是不合格品,即一件为合格品,一件为不合格品(2)为合格品,即两件都是合格品.对于(1),C(1,4)*(1,6)/C(2,10)=8/15;对于(2),C(2,4)/C(2,10)=2/15.提问实际上是求在这两种情况下,(1)的概率,则(2/15)/(8/15 2/15)=1/5

  2、 设A是3阶矩阵,b1,b2,b3是线性无关的3维向量组,已知Ab1=b1 b2, Ab2=-b1 2b2-b3, Ab3=b2-3b3, 求 |A| (答案:|A|=-8)

  【思路】A= (等式两边求行列式的值,因为b1,b2,b3线性无关,所以其行列式的值不为零,等式两边正好约去,得-8)

  3、 某人自称能预见未来,作为对他的考验,将1枚硬币抛10次,每一次让他事先

  预言结果,10次中他说对7次 ,如果实际上他并不能预见未来,只是随便猜测, 则他作出这样好的答案的概率是多少?答案为11/64。

  【思路】原题说他是好的答案,即包括了7次,8次,9次,10次的概率. 即 C(7 10)0.5^7x0.5^3 ......C(10 10)0.5^10, 即为11/64.

  4、 成等比数列三个数的和为正常数K,求这三个数乘积的最小值

  【思路】a/q a a*q=k(k为正整数)

  由此求得a=k/(1/q 1 q)

  所求式=a^3,求最小值可见简化为求a的最小值.

  对a求导,的驻点为q= 1,q=-1.

  其中q=-1时a取极小值-k,从而有所求最小值为a=-k^3.(mba不要求证明最值)

  5、 掷五枚硬币,已知至少出现两个正面,则正面恰好出现三个的概率。

  【思路】可以有两种方法:

  1.用古典概型 样本点数为C(3,5),样本总数为C(2,5)C(3,5)C(4,5)C(5,5)(也就是说正面朝上为2,3,4,5个),相除就可以了;

  2.用条件概率 在至少出现2个正面的前提下,正好三个的概率。至少2个正面向上的概率为13/16,P(AB)的概率为5/16,得5/13

  假设事件A:至少出现两个正面;B:恰好出现三个正面。

  A和B满足贝努力独立试验概型,出现正面的概率p=1/2

  P(A)=1-(1/2)^5-(C5|1)*(1/2)*(1/2)^4=13/16

  A包含B,P(AB)=P(B)=(C5|3)*(1/2)^3*(1/2)^2=5/16

  所以:P(B|A)=P(AB)/P(A)=5/13。

 1、 国家羽毛球队的3名男队员和3名女队员,要组成3个队,参加世界杯的混合双打比赛,则不同的组队方案为?

  【思路1】c(3,1)*c(3,1)*c(2,1)c(2,1)=36

  已经是看成了三个不同的队。

  若三个队无区别,再除以3!,既等于6。

  【思路2】只要将3个GG看成是3个箩筐,而将3个MM看成是3个臭鸡蛋,每个箩筐放1个,不同的放法当然就是3!=6

  (把任意三个固定不动,另外三个做全排列就可以了)

  2、 假定在国际市场上对我国某种出口商品需求量X(吨)服从(2000,4000)的均匀分布。假设每出售一吨国家可挣3万元,但若卖不出去而囤积于仓库每吨损失一万元,问国家应组织多少货源使受益最大?

  【思路】设需应组织a吨货源使受益最大

  4000≥X≥a≥2000时,收益函数f(x)=3a,

  2000≤X<a≤4000时,收益函数f(x)=4X-a,

  X的分布率:

  2000≤x≤4000时,P(x)= ,

  其他, P(x)=0

  E(X)=∫(-∞, ∞)f(x)P(x)dx=

  [ ]

  = [-(a-3500) 2 8250000]

  即a=3500时收益最大。最大收益为8250万。

  3、 将7个白球,3个红球随机均分给5个人,则3个红球被不同人得到的概率是( )

  (A)1/4 (B)1/3 (C)2/3 (D)3/4

  【思路】注意“均分”二字,按不全相异排列解决

  分子=C(5,3)*3!*7!/2!2!

  分母=10!/2!2!2!2!2!

  P= 2/3

  4、 一列客车和一列货车在平行的铁轨上同向匀速行驶。客车长200 m,货车长280 m,货车速度是客车速度的3/5,后出发的客车超越货车的错车时 间是1分钟,那么两车相向而行时错车时 间将缩短为( )(奇迹300分,56页第10题)

  A、1/2分钟 B、16/65分钟 C、1/8分钟 D、2/5分钟

  【思路】书上答案是B,好多人说是错的,应该是1/4,还有一种观点如下:

  用相对距离算,

  设同向时的错车距离为s,设客车速度为v,

  则货车速度为3v/5同向时相对速度为2v/5,

  则1分钟=s/(2v/5),得v=5s/2因为200相向时相对速度是8 v/5,

  相对距离为480

  此时错车时 间=480/(8v/5)=120/s

  因而结果应该是 [1/4,3/5 )之间的一个值,

  答案中只有D合适

  (注:目前关于此题的讨论并未有太令人满意的结果!)

  5、 一条铁路有m个车站,现增加了n个,此时的车票种类增加了58种,(甲到乙和乙到甲为两种),原有多少车站?(答案是14)

  【思路1】设增加后的车站数为T,增加车站数为N

  则:T(T-1)-(T-N)(T-1-N)=58

  解得:N2 (1-2T)N 58=0 (1)

  由于(1)只能有整数解,因此N1=2 T1=16;N2=29 T2=16(不符合,舍去)

  所以原有车站数量为T-N=16-2=14。

  【思路2】原有车票种数=P(m,2),增加n个车站后,共有车票种数P(m n,2),增加的车票种数=n(n 2m-1)=58=1*58=2*29,因为n1,所以只能n=2,这样可求出m=14


考研新生必读

更多»

报考指南

更多»

热点资讯

更多»

心得技巧

更多»
关于我们合作联系
全国客服热线:4000-233-168 增值电信业务经营许可证:陕B2-20090096 陕ICP备13003490号
版权所有©2005-2013 168网校(168wangxiao.com) All Rights Reserved